Sunday, 6 May 2012

Unification of OOP and FP in Scala and F#

What are the key differences between the approaches taken by Scala and F# to unify OO and FP paradigms?
The key difference is that Scala tries to blend the paradigms by making sacrifices (usually on the FP side) whereas F# (and OCaml) generally draw a line between the paradigms and let the programmer choose between them for each task.
Scala had to make sacrifices in order to unify the paradigms. For example:
  • First-class functions are an essential feature of any functional language (ML, Scheme and Haskell). All functions are first-class in F#. Member functions are second-class in Scala.
  • Overloading and subtypes impede type inference. F# provides a large sublanguage that sacrifices these OO features in order to provide powerful type inference when these features are not used (requiring type annotations when they are used). Scala pushes these features everywhere in order to maintain consistent OO at the cost of poor type inference everywhere.
Another consequence of this is that F# is based upon tried and tested ideas whereas Scala is pioneering in this respect. This is ideal for the motivations behind the projects: F# was designed to be a commercial product and Scala was designed for academic programming language research.
As an aside, Scala also sacrificed other core features of FP such as tail-call optimization for pragmatic reasons due to limitations of their VM of choice (the JVM). This also makes Scala much more OOP than FP. Note that there is a project to bring Scala to .NET that will use the CLR to do genuine TCO.
What are the relative merits and demerits of each approach? If, in spite of the support for subtyping, F# can infer the types of function arguments then why can't Scala?
Type inference is at odds with OO-centric features like overloading and subtypes. F# chose type inference over consistency with respect to overloading. Scala chose ubiquitous overloading and subtypes over type inference. This makes F# more like OCaml and Scala more like C#. In particular, Scala is no more a functional programming language than C# is.
Which is better is entirely subjective, of course, but I personally much prefer the tremendous brevity and clarity that comes from powerful type inference in the general case. OCaml is a wonderful language but one pain point was the lack of operator overloading that required programmers to use + for ints, +.for floats, +/ for rationals and so on. Once again, F# chooses pragmatism over obsession by sacrificing type inference for overloading specifically in the context of numerics, not only on arithmetic operators but also on arithmetic functions such as sin. Every corner of the F# language is the result of carefully chosen pragmatic trade-offs like this.

No comments: